Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses.
نویسندگان
چکیده
Clinical trials have proven oncolytic virotherapy to be safe but not effective. We have shown that oncolytic viruses (OV) injected into intracranial gliomas established in rodents are rapidly cleared, and this is associated with up-regulation of markers (CD68 and CD163) of cells of monocytic lineage (monocytes/microglia/macrophages). However, it is unclear whether these cells directly impede intratumoral persistence of OV through phagocytosis and whether they infiltrate the tumor from the blood or the brain parenchyma. To investigate this, we depleted phagocytes with clodronate liposomes (CL) in vivo through systemic delivery and ex vivo in brain slice models with gliomas. Interestingly, systemic CL depleted over 80% of peripheral CD163+ macrophages in animal spleen and peripheral blood, thereby decreasing intratumoral infiltration of these cells, but CD68+ cells were unchanged. Intratumoral viral titers increased 5-fold. In contrast, ex vivo CL depleted only CD68+ cells from brain slices, and intratumoral viral titers increased 10-fold. These data indicate that phagocytosis by both peripheral CD163+ and brain-resident CD68+ cells infiltrating tumor directly affects viral clearance from tumor. Thus, improved therapeutic efficacy may require modulation of these innate immune cells. In support of this new therapeutic paradigm, we observed intratumoral up-regulation of CD68+ and CD163+ cells following treatment with OV in a patient with glioblastoma.
منابع مشابه
Microenvironment and Immunology TGFb Treatment Enhances Glioblastoma Virotherapy by Inhibiting the Innate Immune Response
Oncolytic viruses, including oncolytic herpes simplex virus (oHSV), have produced provocative therapeutic responses in patients with glioblastoma, the most aggressive brain tumor. Paradoxically, innate immune responses mediated by natural killer (NK) cells and macrophages/microglia appear to limit oHSV efficacy. Therefore, we investigated whether pretreatment with an immunosuppressive cytokine,...
متن کاملO27: Interaction of Cancer Stem Cells and Microglia in Glioblastoma Multiforme
Malignant gliomas are highly invasive brain tumors with the occurrence of multiple microglia/macrophages in the tumor microenvironment. Macrophages/microglia that found in glioma microenvironment, as tumor-infiltrating immune cells, can play a harmful role in tumor progression. In addition, glioblastoma multiforme (GBM) contains multiple aberrant differentiation and tumorigenic cancer stem cell...
متن کاملTumor initiating cells induce Cxcr4-mediated infiltration of pro-tumoral macrophages into the brain
It is now clear that microglia and macrophages are present in brain tumors, but whether or how they affect initiation and development of tumors is not known. Exploiting the advantages of the zebrafish (Danio rerio) model, we showed that macrophages and microglia respond immediately upon oncogene activation in the brain. Overexpression of human AKT1 within neural cells of larval zebrafish led to...
متن کاملP157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform
Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis. In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...
متن کاملImmunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity
Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, includi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 67 19 شماره
صفحات -
تاریخ انتشار 2007